
Contact

Email: clinical@eosdx.com

Website: eosdx.com

1. Ferlay, J., et al., “Global Cancer Observatory: Cancer Today,” Lyon: International Agency for Research on Cancer; 2020, https://gco.iarc.fr/today
2. Ferlay, J., et al., “Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012,” Int. J. Cancer 136, E359-386 (2015).
3. https://www.who.int/news-room/fact-sheets/detail/breast-cancer
4. Frantz, C., Stewart, K. M., and Weaver, V. M., “The extracellular matrix at a glance,” J. Cell Sci. 123, 4195-4200 (2010).
5. Kidane, G., Speller, R. D.. Royle, G. J., and Hanby, A. M., “X-ray scatter signatures for normal and neoplastic breast tissues,” Phys. Med. Biol. 44, 1791 (1999).
6. Lewis, R. A., et al., “Breast cancer diagnosis using scattered X-rays,” J. Synchrotron Radiat. 7, 348–352 (2000).

7. Conceicao, A. L. C., et al., “Multivariate analysis of the scattering profiles of healthy and pathological human breast tissues,” Nucl. Inst. Meth. Phys. Res. A 652, 870–873 (2011).
8. Pani, S., et al., “Characterization of breast tissue using energy-dispersive X-ray diffraction computed tomography,” Appl. Radiat. Isot. 68, 1980–1987 (2010).

9. Sidhu, S., et al., “Classification of breast tissue using a laboratory system for small-angle x-ray scattering (SAXS),” Phys. Med. Biol. 56, 6779 (2011).
10. Scott, R., et al., “Relationships between pathology and crystal structure in breast calcifications: an in situ X-ray diffraction study in histological sections,” NPJ Breast Cancer 2, 16029 (2016).
11. Moss, R. M., et al., “Correlation of X-ray diffraction signatures of breast tissue and their histopathological classification,” Sci. Rep. 7, 12998 (2017).
12. Conceicao, A. L. C., et al., “The influence of hydration on the architectural rearrangement of normal and neoplastic human breast tissues,” Heliyon 5, e01219 (2019).
13. Tartari, A., Casnati, E., Bonifazzi, C., and Baraldi, C., “Molecular differential cross sections for x-ray coherent scattering in fat and polymethyl methacrylate,” Phys. Med. Biol. 42, 2551-2560 (1997).
14. Kidane, G., Speller, R. D., Royle, G. J., and Hanby, A. M., “X-ray scatter signatures for normal and neoplastic breast tissues,” Phys. Med. Biol. 44, 1791-1802 (1999).

References

Background: Conventional breast cancer screening methods face several limitations 

including missed detections, false positives, and exposure to X-rays. There is a clear 

need for an alternative screening method that is non-invasive, rapid, and cost-

effective.

Objective: This study aims to explore the use of X-ray diffraction (XRD) to detect 

structural biomarkers in the extracellular matrix (ECM) of breast tissues, which could 

serve as a basis for a new breast cancer screening technology.

Methods: We performed a systematic analysis using XRD on 292 diffraction scans from 

38 breast cancer patients. The samples, obtained from biopsies and lumpectomies, 

were processed with a custom-built transmission-mode diffractometer. Data were 

divided into a training set of 30 patients and a blind test set of 8 patients. A detection 

algorithm employing machine learning techniques was developed to differentiate 

between healthy and cancerous tissues based on the XRD patterns.

Results: Our analysis revealed significant differences in the XRD patterns between 

normal and cancerous tissues, notably a broader peak in cancerous tissues. The 

machine learning model demonstrated high accuracy, with a sensitivity of 95.9%, 

specificity of 93.5%, and a positive predictive value (PPV) of 95.1% in the training set. The 

blind test set results were similarly robust, with a sensitivity of 97.4%, specificity of 87.2%, 

and PPV of 88.4%.

Conclusion: The study confirms the potential of XRD as a reliable tool for breast cancer 

screening, offering significant improvements over traditional methods by potentially 

reducing unnecessary biopsies and enhancing diagnostic precision. These results 

encourage the integration of XRD analysis into routine breast cancer screening 

protocols, promising a significant step forward in the early detection of breast cancer.

Abstract

Significant differences in XRD patterns between healthy 

and cancerous breast tissues were found.  Additionally, 

a machine learning analysis demonstrated an even 

more precise differentiation between control and 

cancerous clusters. XRD has been demonstrated to 

distinguish between normal and tumorous tissue and it 

should be noted that the most prominent peak in the 

control-like sample is sharper, whereas the most 

prominent peak in the tumor-like sample is broader.

Introduction

Breast tissue samples (biopsies and lumpectomies) were 

obtained following regulatory standards. Tissues were 

microscopically examined and manually probed, guided by 

pathology reports, in order to identify control-like or tumor-like 

regions. Appropriately sized sample holders were selected 

based on tissue dimensions, and each was labeled with a 

unique barcode for tracking purposes. For data collection, we 

used a simple, custom-built, low-cost, transmission-mode 

diffractometer comprising a Xenocs source, Genix 3D Cu, an 

Advacam MiniPIX TPX3 detector, and a sample stage. Breast 

tissue samples were scanned for 2 or 4 minutes at various 

sample-to-detector distances. In this work, we present the 

WAXS (wide-angle X-ray scattering) results obtained with a 

distance of approximately 12 mm. The analysis aimed to 

produce a detection algorithm capable of taking a raw 

diffraction input image and outputting a binary cancer 

prediction. We used data from 38 cancer patients with 292 

diffraction scans in total. We randomly selected 30 patients for 

training and 8 patients for testing (the “blind” set).

Methods and Materials

The XRD patterns were examined using principal 

component analysis and logistic regression. We 

achieved 95.9% sensitivity, 93.5% specificity, and 95.1% 

positive predictive value (PPV) for our training set. For 

the blind set, the results are 97.4%, 87.2%, and 88.4%, 

respectively. It should be emphasized that a separate 

team performed the blind set analysis. Our results 

represent a promising step towards adoption of 

diffraction technology for early cancer detection, 

potentially functioning as an intermediary tool to 

complement the Breast Imaging Reporting and Data 

System (BI-RADS) scoring system and enhancing 

mammography outcomes to minimize the need for 

unnecessary biopsies.

Discussion

The findings of this study highlight the potential of X-ray 

diffraction (XRD) as a transformative tool for breast cancer 

screening. XRD's ability to detect subtle structural changes 

in the extracellular matrix (ECM) of breast tissue offers a 

promising avenue for distinguishing between healthy and 

cancerous tissues. This capability is underscored by the 

pronounced differences in the XRD patterns observed 

between control and tumor-like samples, particularly the 

sharpness and breadth of the peaks, which are indicative 

of underlying molecular changes. The high sensitivity 

(97.4%) and specificity (87.2%) achieved in our blind test set 

suggest that XRD could serve as a complementary 

technique to mammography, potentially advancing the 

accuracy of current screening protocols and reducing 

reliance on invasive biopsies. Overall, the implementation 

of XRD in breast cancer screening facilitates timely 

intervention at the most treatable stage of cancer 

development, thereby enhancing patient outcome. 

Conclusion

Results

.

Despite advancements in early detection of breast 

cancer, conventional screening methods exhibit 

limitations, including missed detections, false positives, 

unnecessary pain, exposure to X-rays, and 

overdiagnosis. Hence, there is an unmet medical need 

for a non-invasive, patient-friendly, quick, and 

economical solution for breast cancer screening. In this 

work, we present a systematic analysis of human breast 

tissue samples using X-ray diffraction (XRD) to determine 

the structural biomarkers associated with the changes in 

extracellular matrix (ECM). Many components of ECM, 

such as glycoproteins, lipids, collagen, and keratin, 

exhibit a periodicity, leading to pronounced XRD 

patterns. These components experience cancer-

induced changes, which the XRD measurements can 

monitor.

Fig 3: PCA-transformed data in 3 dimensions and the decision 

boundary.

Dataset Sensitivity Specificity PPV F1

Training 95.9% 93.5% 95.1% 0.955

Blind 97.4% 87.2% 88.4% 0.927

Overall 96.3% 91.6% 93.4% 0.948
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Fig 1: (Left) tumor-like diffraction pattern (Right) control-like diffraction 

pattern  

Fig 2: XRD instrument used at EosDx

Table 1: Algorithm performance on the training set, blind set, and entire dataset

Fig 4: ROC curves on training (left) and blind (right) data, with the AUC 

values indicated.
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