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ABSTRACT  

False positives from breast cancer screenings lead to billions of dollars of waste and suffering every year. X-ray diffraction 

of breast tissue for cancer detection is a promising technique that can potentially be used to reduce the significant number 

of unnecessary biopsies by first scanning suspicious areas, rather than performing a biopsy straightaway. Breast tissue 

diffraction patterns contain information about the structure and density of constituent fiber molecular structures, such as 

fatty acids and collagen. These structural biomarkers are known to change due to the presence of tumors. We ran a pilot 

study with biopsies from 38 cancer patients that were scanned using a low-cost diffractometer. Our diagnostic algorithm 

achieved an overall performance of 96.3% sensitivity, 91.6% specificity, and 93.4% positive predictive value based on a 

random train-test split. We believe X-ray diffraction technology is mature enough to be integrated into the clinical setting 

in the near future.  

Keywords: X-ray diffraction, early cancer diagnostics, structural biomarkers, principal component analysis, ROC curve. 

 

1. INTRODUCTION  

Cancer is the second leading cause of death worldwide, accounting for nearly 10 million deaths in 20201. By 2040, the 

global burden is expected to grow to 27.5 million new cancer cases and 16.3 million cancer deaths simply due to the 

growth and aging of the population2. The “War on Cancer” was announced more than 50 years ago with the signing of the 

National Cancer Act of 1971 by United States President Richard Nixon. Since then, billions of dollars have been spent on 

cancer-related research, and trillions have been spent on treatment. Still, despite certain improvements in cancer survival 

and the development of successful treatment methods for certain types of cancer, this war is far from victory. This is 

especially true for breast cancer. According to the World Health Organization (WHO), breast cancer is the most common 

type in women in the developed and developing world. In 2020, there were 2.3 million women diagnosed with breast 

cancer and 685,000 deaths globally3. 

In this work, we present a systematic analysis of human breast tissue samples using X-ray diffraction (XRD) to determine 

the structural biomarkers associated with the changes in extracellular matrix (ECM). Many components of ECM4, such as 

glycoproteins, lipids, collagen, and keratin, exhibit a periodicity, leading to pronounced XRD patterns. These compounds 

experience cancer-induced changes, which the XRD measurements can monitor. In several papers, researchers studied 

local structural responses of breast tissues5-12 using both small- (SAXS) and wide-angle x-ray scattering (WAXS). 

Numerous characteristic peaks were identified, and their relations to the periodicities of various ECM components were 

discussed. It should be emphasized that the developed EosDx prototype (Fig. 1) can perform both SAXS and WAXS 

measurements on the same machine just by changing the distance between the sample and the detector.  



 

 
 

 

 

 

Figure 1. EosDx X-Ray Diffractometer. 

 

2. METHODOLOGY 

2.1 Tissue preparation  

Breast tissue samples (biopsies and mastectomy) were obtained from the San Fernando Valley Cancer Foundation 

following regulatory standards. Specimens were transported to the XRD laboratory on dry ice on surgery day. If needed, 

specimens were thawed in a water bath at room temperature. 

The XRD clinical team processed specimens in a sterile environment within a laminar flow hood. Tissues were 

microscopically examined and manually probed, guided by pathology reports, in order to identify control-like or tumor-

like regions. Appropriately sized sample holders were selected based on tissue dimensions, and each was labeled with a 

unique barcode for tracking purposes. Mylar windows were fitted to sample holders to secure specimens. Mylar material 

was specifically chosen since it does not produce a diffraction signal at the angles of interest in our study. 

Samples were preserved in CryoStor CS10 medium at -80°F for long-term storage. Our approach was designed to ensure 

the integrity and traceability of tissue samples for XRD analysis.   

2.2 Diffraction measurements  

We used a simple, custom-built, low-cost, transmission-mode diffractometer comprising a Xenocs source, Genix 3D Cu 

with Fox 12-53 Cu Mirror (λ = 0.1540562 nm), an Advacam MiniPIX TPX3 detector (256x256 pixel sensor array, with 

55 μm square pixel dimensions), and a sample stage. For affordability and simplicity, we used air as the scattering medium. 

For signal normalization purposes, a beam stop was not used. The collimated beam had an approximate spot size of 1 mm 

in diameter on samples. 

The diffractometer was calibrated using a sample of powdered silver behenate. Breast tissue samples were scanned for 2 

or 4 minutes at various sample-to-detector distances. In this work, we present the WAXS results obtained with a distance 

of approximately 12 mm. Scanning time was decreased for control-like tissues since enough signal was captured after 2 

minutes. Measurement data was saved as an array of 256x256 integers.  

2.3 Data analysis   

The analysis aimed to produce a diagnostic algorithm capable of taking a raw diffraction input image and outputting a 

binary cancer prediction. We used data from 38 cancer patients with 292 diffraction scans in total. We randomly selected 

30 patients for training and 8 patients for testing (the “blind” set), see Table 1 for dataset compositions. 

Raw measurements were preprocessed using the following steps: denoising, azimuthal integration, conversion of units, 

interpolation, normalization, and standard scaling. Analysis consisted of two steps, principal component analysis (PCA) 

and logistic regression. All steps are summarized below. 

 

 

  



 

 
 

 

 

Table 1. Dataset compositions. 

Dataset  Cancer 

patient count  

Tumor 

measurement count  

Control measurement count  Total measurement 

count  

Training 30 122 92 214 

Blind  8 39 39 78 

Total 38 161 131 292 

 

Denoising consisted of detecting and ignoring pixels with singular values. Azimuthal integration converted the 2D 

measurements into 1D intensity profiles by computing the mean intensity as a function of the radius using the beam center 

location from corresponding calibration measurements. Conversion of units used the sample-to-detector distance from 

corresponding calibration measurements to transform the pixel length units into momentum transfer units (q). Conversion 

of units was especially needed since multiple sample-to-detector distances were used throughout the course of this study. 

Similarly, interpolation was also needed to compare specific q values due to the digital nature of the detector. 

Normalization via the Euclidean norm was used to help control for differences in flux due to exposure time or tissue 

density. In subsequent steps, standard scaling was used to prevent arbitrary q values from having too much weight. 

PCA was performed on the q range of 10 to 23 nm-1 at a resolution of 256 points. We used three PCA components so that 

individual tissue diffraction measurements were represented by three coordinates in PCA space. PCA reduces the 

dimensionality and changes the basis so that the lowest dimensions have the highest variance. We fit a logistic regression 

classifier to the training data using a linear decision boundary (i.e., a plane) in 3D PCA space. The clinical team provided 

the diagnostic labels “control” or “tumor” for model training and testing. We used sensitivity, specificity, positive 

predictive value (PPV), and the F1-score as performance metrics. Sensitivity is the proportion of the tumor samples that 

were correctly identified. Similarly, specificity measures the proportion of control samples that were correctly identified. 

PPV measures the accuracy of cancer predictions. Finally, the F1-score is a weighted mean of sensitivity and specificity. 

We chose the threshold which yielded the performance closest to an ideal classifier on the receiver operating characteristics 

(ROC) curve. The area under the ROC curve (AUC) is also an important metric, as the closer it is to one, the better. 

Performance was assessed on a blind set by a separate team using the same preprocessing and analysis pipeline from the 

training phase, which included all preprocessing and analysis steps with a pre-trained logistic regression classifier.  

 

3. RESULTS 

Typical XRD patterns are presented in the top panels of Fig. 2, with the control-like sample on the left and the tumor-like 

sample on the right. The relative positions of the rings can be compared using two bright faulty pixels. Corresponding 1D 

dependencies of the intensities on q, obtained after azimuthal integration and conversion of units, are shown in the middle 

panels. The bottom panels contain the magnified region of the q values used for the PCA analysis. Measurements of 

control-like tissues typically produced a diffraction ring near 14.1 per nm, whereas measurements of tumor-like tissues 

typically produced a diffraction ring near 20 per nm. The healthy peak is associated with the intermolecular distance in the 

fatty acid molecules (adipose)13. The tumor peak corresponds to the signal from the oxygen-oxygen electron density 

correlation between adjacent molecules on the tetrahedral structure of liquid water14. It should be noted that the most 

prominent peak in the control-like sample is sharper, whereas the most prominent peak in the tumor-like sample is broader. 



 

 
 

 

 

                  

    

    

Figure 2. Typical control-like sample diffraction pattern (left) and tumor-like sample diffraction pattern (right). The top 

images are raw measurements with log-rescaled intensity; the middle images are after azimuthal integration; and the bottom 

images contain data from the q-range 10 to 23 nm-1. 

 

The data were run through the preprocessing and analysis pipeline, with the obtained PCA loading curves presented in 

Fig. 3 and the variance shown in Table 2. 



 

 
 

 

 

     

Figure 3. PCA loading plots for PC0, PC1, and PC2. 

Table 2. Explained variance for the first three dimensions of PCA. 

PC0 PC1 PC2 Total 

84.2% 12.5% 2.6% 99.3% 

 

After using these loading plots, each data set can be represented as a point in the 3D space of the principal components, as 

shown in Fig. 4. 

 

Figure 4. PCA-transformed data in 3 dimensions and the decision boundary.  

It is evident from Fig. 4 that we achieve an excellent separation of control and tumor clusters. Table 3 contains the detailed 

performance metrics, including sensitivity, specificity, positive predictive value (PPV), and F1 score. 

Table 3. Algorithm performance on the training set, blind set, and entire dataset. 

Dataset  Sensitivity  Specificity  PPV  F1  

Training  95.9%  93.5%  95.1% 0.955 

Blind  97.4% 87.2% 88.4% 0.927 

Overall 96.3% 91.6% 93.4% 0.948 

 



 

 
 

 

 

Varying the decision boundary, the ROC curves are obtained for the training and blind datasets, as shown in Fig. 5. The 

AUC values are 0.96 for the training set and 0.97 for the blind set, indicating high model performance. 

    

Figure 5. ROC curves on training (left) and blind (right) data, with the AUC values indicated. 

 

4. CONCLUSIONS 

In conclusion, we performed X-ray diffraction measurements of the tissue samples from 38 patients with breast cancer. 

The clinical team visually separated the tissues into the control and tumor ones. The XRD patterns were examined using 

principal component analysis and logistic regression. We achieved 95.9% sensitivity, 93.5% specificity, and 95.1% positive 

predictive value (PPV) for our training set. For the blind set, the results are 97.4%, 87.2%, and 88.4%, respectively. It should 

be emphasized that a separate team performed the blind set analysis. 

In this work, we limited ourselves to the WAXS results with the q-range of 10 to 23 nm-1, with the most prominent features 

associated with adipose. Next, we will examine the SAXS to study the contributions of collagen and glycoproteins. 

Our results represent a promising step towards commercialization and widespread adoption of diffraction technology for 

early cancer detection. However, future studies are necessary to increase the data volume, match our results with “gold-

standard” histopathology, and compare them with genuinely healthy samples. 
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